Restricted b-Factors in Bipartite Graphs and t-Designsy
نویسندگان
چکیده
We present a new equivalence result between restricted b-factors in bipartite graphs and combinatorial t-designs. This result is useful in the construction of t-designs by polyhedral methods. We propose a novel linear integer programming formulation, which we call GDP, for the problem of finding t-designs that has a noteworthy advantage compared to the traditional set-covering formulation. We analyze some polyhedral properties of GPD, implement a branch-and-cut algorithm using it and solve several instances of small designs to compare with another point-block formulation found in the literature. # 2006 Wiley Periodicals, Inc. J Combin Designs 14: 169–182, 2006
منابع مشابه
Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملRestricted 2 { factors in Bipartite
The k{restricted 2{factor problem is that of nding a spanning subgraph consisting of disjoint cycles with no cycle of length less than or equal to k. It is a generalization of the well known Hamilton cycle problem and is equivalent to this problem when n 2 k n ? 1. This paper considers necessary and suucient conditions, algorithms, and polyhedral conditions for 2{factors in bipartite graphs and...
متن کاملSome lower bounds for the $L$-intersection number of graphs
For a set of non-negative integers~$L$, the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots, l}$ to vertices $v$, such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$. The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...
متن کاملMETA-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS
The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...
متن کاملZarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004